Q12. Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + Ay = 4 and the opposite vertex of the hypotenuse is (2, 2).

Sol. As shown in the figure, hypotenuse is along the line 3x + 4y + 4 = 0.

$$\therefore \qquad \text{Slope of } AC = \frac{-3}{4} \ .$$

Since ABC is isosceles right angled triangle, $\angle BAC = \angle ACB = 45^{\circ}$.

Now, let the slope of the line making an angle 45° with AC be m.

$$\therefore \qquad \tan 45^\circ = \left| \frac{m - \left(-\frac{3}{4} \right)}{1 + m \left(-\frac{3}{4} \right)} \right| \Rightarrow \frac{4m + 3}{4 - 3m} = \pm 1$$

$$\Rightarrow$$
 4m + 3 = 4 - 3m or 4m + 3 = 3m - 4 \Rightarrow m = 1/7 or m = -7

So, if the slope of line BC is 1/7 then the slope of line AB is -7.

So, equation of BC is:
$$y - 2 = (1/7)(x - 2)$$
 \Rightarrow $x - 7y + 12 = 0$.

Equation of AB is:
$$y-2=-7(x-2)$$
 \Rightarrow $7x+y-16=0$.